{ "id": "2411.10119", "version": "v1", "published": "2024-11-15T11:33:52.000Z", "updated": "2024-11-15T11:33:52.000Z", "title": "Multiple solutions for superlinear fractional $p$-Laplacian equations", "authors": [ "Antonio Iannizzotto", "Vasile Staicu", "Vincenzo Vespri" ], "comment": "18 pages", "categories": [ "math.AP" ], "abstract": "We study a Dirichlet problem driven by the (degenerate or singular) fractional $p$-Laplacian and involving a $(p-1)$-superlinear reaction at infinity, not necessarily satisfying the Ambrosetti-Rabinowitz condition. Using critical point theory, truncation, and Morse theory, we prove the existence of at least three nontrivial solutions to the problem.", "revisions": [ { "version": "v1", "updated": "2024-11-15T11:33:52.000Z" } ], "analyses": { "subjects": [ "35A15", "35R11", "58E05" ], "keywords": [ "superlinear fractional", "laplacian equations", "multiple solutions", "dirichlet problem driven", "nontrivial solutions" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }