{ "id": "2411.09949", "version": "v1", "published": "2024-11-15T05:02:50.000Z", "updated": "2024-11-15T05:02:50.000Z", "title": "$W_{\\bf d}$-convergence rate of EM schemes for invariant measures of supercritical stable SDEs", "authors": [ "Peng Chen", "Lihu Xu", "Xiaolong Zhang", "Xicheng Zhang" ], "comment": "24", "categories": [ "math.PR" ], "abstract": "By establishing the regularity estimates for nonlocal Stein/Poisson equations under $\\gamma$-order H\\\"older and dissipative conditions on the coefficients, we derive the $W_{\\bf d}$-convergence rate for the Euler-Maruyama schemes applied to the invariant measure of SDEs driven by multiplicative $\\alpha$-stable noises with $\\alpha \\in (\\frac{1}{2}, 2)$, where $W_{\\bf d}$ denotes the Wasserstein metric with ${\\bf d}(x,y)=|x-y|^\\gamma\\wedge 1$ and $\\gamma \\in ((1-\\alpha)_+, 1]$.", "revisions": [ { "version": "v1", "updated": "2024-11-15T05:02:50.000Z" } ], "analyses": { "subjects": [ "60H10" ], "keywords": [ "invariant measure", "supercritical stable sdes", "convergence rate", "em schemes", "nonlocal stein/poisson equations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }