{ "id": "2411.08006", "version": "v1", "published": "2024-11-12T18:30:29.000Z", "updated": "2024-11-12T18:30:29.000Z", "title": "On the FOD/FOM parameter of rational maps", "authors": [ "Ruben A. Hidalgo" ], "categories": [ "math.DS" ], "abstract": "Let $\\chi$ be a (right) action of ${\\rm PSL}_{2}({\\mathbb L})$ on the space ${\\mathbb L}(z)$ of rational maps defined over an algebraically closed field ${\\mathbb L}$. If $R \\in {\\mathbb L}(z)$ and ${\\mathcal M}_{R}^{\\chi}$ is its $\\chi$-field of moduli, then the parameter ${\\rm FOD/FOM}_{\\chi}(R)$ is the smallest integer $n \\geq 1$ such that there is a $\\chi$-field of definition of $R$ being a degree $n$ extension of ${\\mathcal M}_{R}^{\\chi}$. When ${\\mathbb L}$ has characteristic zero and $\\chi=\\chi_{\\infty}$ is the conjugation action, then it is known that ${\\rm FOD/FOM}_{\\chi_{\\infty}}(R) \\leq 2$. In this paper, we study the above parameter for general actions and any characteristic.", "revisions": [ { "version": "v1", "updated": "2024-11-12T18:30:29.000Z" } ], "analyses": { "subjects": [ "37F10", "37P05", "30F30" ], "keywords": [ "rational maps", "fod/fom parameter", "characteristic zero", "conjugation action", "general actions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }