{ "id": "2411.07324", "version": "v1", "published": "2024-11-11T19:33:17.000Z", "updated": "2024-11-11T19:33:17.000Z", "title": "The Hilbert matrix done right", "authors": [ "A. Montes-Rodríguez", "J. A. Virtanen" ], "comment": "To appear in Operator Theory: Advances and Applications (IWOTA 2023)", "categories": [ "math.FA", "math.CV" ], "abstract": "We give very simple proofs of the classical results of Magnus and Hill on the spectral properties of the Hilbert matrix $$ H = \\left ( {1 \\over i+j+ 1 } \\right )_{i,j\\geq 0} $$ which defines a bounded linear operator on the sequence space $\\ell^2$. In particular, we use the Mehler-Fock transform to find the spectrum and the latent eigenfunctions of the Hilbert matrix, that is, we show that the spectrum of $H$ is $[0,\\pi]$ with no eigenvalues (Magnus' result) and describe all complex sequences $x$ such that $Hx=\\mu x$ for some complex number $\\mu$ (Hill's result).", "revisions": [ { "version": "v1", "updated": "2024-11-11T19:33:17.000Z" } ], "analyses": { "keywords": [ "hilbert matrix", "simple proofs", "complex sequences", "hills result", "spectral properties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }