{ "id": "2411.06149", "version": "v1", "published": "2024-11-09T11:29:21.000Z", "updated": "2024-11-09T11:29:21.000Z", "title": "An elementary proof of the existence and uniqueness of solutions to an initial value problem", "authors": [ "Luca Tanganelli Castrillón" ], "comment": "8 pages", "categories": [ "math.CA" ], "abstract": "In this note, we show a classical result on the local existence and uniqueness of a solution to an initial value problem subject to a Lipschitz condition. We use only elementary tools from mathematical analysis, without involving any integration. We proceed by showing that the Cauchy iterates converge on a dense subset of the interval and subsequently proving that the extension of this limit function to the whole interval is a solution to the Cauchy problem.", "revisions": [ { "version": "v1", "updated": "2024-11-09T11:29:21.000Z" } ], "analyses": { "subjects": [ "34A12" ], "keywords": [ "elementary proof", "uniqueness", "initial value problem subject", "cauchy iterates converge", "local existence" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }