{ "id": "2410.19138", "version": "v1", "published": "2024-10-24T20:13:47.000Z", "updated": "2024-10-24T20:13:47.000Z", "title": "Spectrality of the product does not imply that the components are spectral", "authors": [ "Gábor Somlai" ], "categories": [ "math.CA" ], "abstract": "Greenfeld and Lev conjectured that the Cartesian product of two sets $A$ and $B$ is spectral if and only if $A$ and $B$ are spectral. We construct a counterexample to this fact using the existence of a tile that has no spectra.", "revisions": [ { "version": "v1", "updated": "2024-10-24T20:13:47.000Z" } ], "analyses": { "keywords": [ "spectrality", "components", "cartesian product" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }