{ "id": "2410.18058", "version": "v1", "published": "2024-10-23T17:32:19.000Z", "updated": "2024-10-23T17:32:19.000Z", "title": "On the Heine Binomial Operators", "authors": [ "Ronald Orozco López" ], "categories": [ "math.CO" ], "abstract": "In this paper, we introduce the Heine binomial operators H$_{n}(bD_{q})$ based on $q$-differential operator $D_{q}$. The motivation for introducing the operators H$_{n}(bD_{q})$ is that their limit turns out to be the $q$-exponential operator T$(bD_{q})$ given by Chen. The Hahn polynomials $\\Phi_{m}^{(q^n)}(b,x|q)$ can easily be represented by using the operators H$_{n}(bD_{q})$. Here, we derive $q$-exponential and ordinary generating function, Mehler's formula, Rogers formula, and other identities for the polynomials $\\Phi_{m}^{(q^n)}(b,x|q)$.", "revisions": [ { "version": "v1", "updated": "2024-10-23T17:32:19.000Z" } ], "analyses": { "subjects": [ "05A30", "33D45" ], "keywords": [ "heine binomial operators", "differential operator", "exponential operator", "mehlers formula", "ordinary generating function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }