{ "id": "2410.17110", "version": "v1", "published": "2024-10-22T15:35:16.000Z", "updated": "2024-10-22T15:35:16.000Z", "title": "Identities for the Rogers-Ramanujan Continued Fraction", "authors": [ "Nayandeep Deka Baruah", "Pranjal Talukdar" ], "comment": "To appear in Journal of the Korean Mathematical Society", "categories": [ "math.NT" ], "abstract": "We prove some new modular identities for the Rogers\\textendash Ramanujan continued fraction. For example, if $R(q)$ denotes the Rogers\\textendash Ramanujan continued fraction, then \\begin{align*}&R(q)R(q^4)=\\dfrac{R(q^5)+R(q^{20})-R(q^5)R(q^{20})}{1+R(q^{5})+R(q^{20})},\\\\ &\\dfrac{1}{R(q^{2})R(q^{3})}+R(q^{2})R(q^{3})= 1+\\dfrac{R(q)}{R(q^{6})}+\\dfrac{R(q^{6})}{R(q)}, \\end{align*}and\\begin{align*}R(q^2)=\\dfrac{R(q)R(q^3)}{R(q^6)}\\cdot\\dfrac{R(q) R^2(q^3) R(q^6)+2 R(q^6) R(q^{12})+ R(q) R(q^3) R^2(q^{12})}{R(q^3) R(q^6)+2 R(q) R^2(q^3) R(q^{12})+ R^2(q^{12})}.\\end{align*} In the process, we also find some new relations for the Rogers-Ramanujan functions by using dissections of theta functions and the quintuple product identity.", "revisions": [ { "version": "v1", "updated": "2024-10-22T15:35:16.000Z" } ], "analyses": { "subjects": [ "11F27", "11P84", "11A55", "33D90" ], "keywords": [ "rogers-ramanujan continued fraction", "quintuple product identity", "rogers-ramanujan functions", "modular identities", "theta functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }