{ "id": "2410.17054", "version": "v1", "published": "2024-10-22T14:36:28.000Z", "updated": "2024-10-22T14:36:28.000Z", "title": "Bounded weak solutions with Orlicz space data: an overview", "authors": [ "David Cruz-Uribe" ], "categories": [ "math.AP" ], "abstract": "It is well known that non-negative solutions to the Dirichlet problem $\\Delta u =f$ in a bounded domain $\\Omega$, where $f\\in L^q(\\Omega)$, $q>\\frac{n}2$, satisfy $\\|u\\|_{L^\\infty(\\Omega)} \\leq C\\|f\\|_{L^q(\\Omega)}$. We generalize this result by replacing the Laplacian with a degenerate elliptic operator, and we show that we can take the data $f$ in an Orlicz space $L^A(\\Omega)$ that, in the classical case, lies strictly between $L^{\\frac{n}{2}}(\\Omega)$ and $L^q(\\Omega)$, $q>\\frac{n}2$.", "revisions": [ { "version": "v1", "updated": "2024-10-22T14:36:28.000Z" } ], "analyses": { "subjects": [ "35B45", "35D30", "35J25", "46E30" ], "keywords": [ "orlicz space data", "bounded weak solutions", "degenerate elliptic operator", "dirichlet problem", "bounded domain" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }