{ "id": "2410.16900", "version": "v1", "published": "2024-10-22T11:06:47.000Z", "updated": "2024-10-22T11:06:47.000Z", "title": "On elliptic surfaces which have no 1-handles", "authors": [ "Daisuke Kusuda" ], "comment": "19 pages, 26 figures", "categories": [ "math.GT" ], "abstract": "Gompf conjectured that the elliptic surface $E(n)_{p,q}$ has no handle decomposition without 1- and 3-handles. We prove that each of the elliptic surfaces $E(n)_{5,6}$, $E(n)_{6,7}$, $E(n)_{7,8}$ and $E(n)_{8,9}$ has a handle decomposition without 1-handles for $n\\geq4$, $n\\geq 5$, $n\\geq 9$ and $n\\geq 24$, respectively.", "revisions": [ { "version": "v1", "updated": "2024-10-22T11:06:47.000Z" } ], "analyses": { "subjects": [ "57R55", "57R19" ], "keywords": [ "elliptic surface", "handle decomposition" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }