{ "id": "2410.15043", "version": "v1", "published": "2024-10-19T09:02:08.000Z", "updated": "2024-10-19T09:02:08.000Z", "title": "Surjectivity of convolution operators on harmonic $NA$ groups", "authors": [ "Effie Papageorgiou" ], "categories": [ "math.FA" ], "abstract": "Let $\\mu$ be a radial compactly supported distribution on a harmonic $NA$ group. We prove that the right convolution operator $c_{\\mu}:f \\mapsto f* \\mu$ maps the space of smooth $\\mathfrak{v}$-radial functions onto itself if and only if the spherical Fourier transform $\\widetilde{\\mu}(\\lambda)$, $\\lambda \\in \\mathbb{C}$, is slowly decreasing. As an application, we prove that certain averages over spheres are surjective on the space of smooth $\\mathfrak{v}$-radial functions.", "revisions": [ { "version": "v1", "updated": "2024-10-19T09:02:08.000Z" } ], "analyses": { "subjects": [ "43A85", "43A90", "22E30" ], "keywords": [ "radial functions", "surjectivity", "right convolution operator", "radial compactly supported distribution", "spherical fourier transform" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }