{ "id": "2410.13438", "version": "v1", "published": "2024-10-17T11:08:08.000Z", "updated": "2024-10-17T11:08:08.000Z", "title": "Universal multipliers for Sub-Hardy Hilbert spaces", "authors": [ "Bartosz Malman", "Daniel Seco" ], "categories": [ "math.FA", "math.CV" ], "abstract": "To every non-extreme point $b$ of the unit ball of $\\hil^\\infty$ of the unit disk there corresponds a Pythagorean mate, a bounded outer function $a$ satisfying the equation $|a|^2 + |b|^2 = 1$ on the boundary of the disk. We study universal, i.e., simultaneous multipliers for families of de Branges-Rovnyak spaces $\\hb$, and develop a general framework for this purpose. Our main results include a new proof of the Davis-McCarthy universal multiplier theorem for the class of all non-extreme spaces $\\hb$, a characterization of the Lipschitz classes as the universal multipliers for spaces $\\hb$ for which the quotient $b/a$ is contained in a Hardy space, and a similar characterization of the Gevrey classes as the universal multipliers for spaces $\\hb$ for which $b/a$ is contained in a Privalov class.", "revisions": [ { "version": "v1", "updated": "2024-10-17T11:08:08.000Z" } ], "analyses": { "subjects": [ "30H45", "47B32" ], "keywords": [ "sub-hardy hilbert spaces", "davis-mccarthy universal multiplier theorem", "privalov class", "hardy space", "pythagorean mate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }