{ "id": "2410.13382", "version": "v1", "published": "2024-10-17T09:36:02.000Z", "updated": "2024-10-17T09:36:02.000Z", "title": "Spectra of eccentricity matrix of $H$-join of graphs", "authors": [ "S. Balamoorthy", "T. Kavaskar" ], "categories": [ "math.CO" ], "abstract": "Let $\\varepsilon(G)$ be the eccentricity matrix of a graph $G$ and $Spec(\\varepsilon(G))$ be the eccentricity spectrum of $G$. Let $H[G_1,G_2,\\ldots, G_k]$ be the $H$-join of graphs $G_1,G_2,\\ldots, G_k$ and let $H[G]$ be lexicographic product of $H$ and $G$. This paper finds the eccentricity matrix of a $H$-join of graphs. Using this result, we find (i) $Spec(\\varepsilon(H[G]))$ in terms of $Spec(\\varepsilon(H))$ if the radius $(rad(H))$ of $H$ is at least three; (ii) $Spec(\\varepsilon(K_k[G_1,G_2,\\ldots, G_k]))$ if $\\Delta(G_i)\\leq |V(G_i)|-2$ which generalises some of the results in \\cite{Mahato1}; (iii) $Spec(\\varepsilon(H[G_1,G_2,\\ldots, G_k]))$ if $rad(H)\\geq 2$ and $G_i$ is complete whenever $e_H(i)=2$, which generalises some of the results in \\cite{Mahato1} and \\cite{Wang1}. Finally, we find the characteristic polynomial of $\\varepsilon(K_{1,m}[G_0,G_1,\\ldots, G_m])$ if $G_i$'s are regular. As a result, we deduce some of the results in \\cite{Li}, \\cite{Mahato1}, \\cite{Patel} and \\cite{Wang}.", "revisions": [ { "version": "v1", "updated": "2024-10-17T09:36:02.000Z" } ], "analyses": { "subjects": [ "05C50", "05C12" ], "keywords": [ "eccentricity matrix", "characteristic polynomial", "lexicographic product", "generalises", "eccentricity spectrum" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }