{ "id": "2410.13150", "version": "v1", "published": "2024-10-17T02:08:46.000Z", "updated": "2024-10-17T02:08:46.000Z", "title": "A well-quasi-order for continuous functions", "authors": [ "Raphaƫl Carroy", "Yann Pequignot" ], "categories": [ "math.LO" ], "abstract": "We prove that continuous reducibility is a well-quasi-order on the class of continuous functions between separable metrizable spaces with analytic zero-dimensional domain. To achieve this, we define scattered functions, which generalize scattered spaces, and describe exhaustively scattered functions between zero-dimensional separable metrizable spaces up to continuous equivalence.", "revisions": [ { "version": "v1", "updated": "2024-10-17T02:08:46.000Z" } ], "analyses": { "subjects": [ "03E15", "26A21", "54C05", "03D55", "06A07" ], "keywords": [ "continuous functions", "well-quasi-order", "analytic zero-dimensional domain", "define scattered functions", "zero-dimensional separable metrizable spaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }