{ "id": "2410.12637", "version": "v1", "published": "2024-10-16T14:55:22.000Z", "updated": "2024-10-16T14:55:22.000Z", "title": "On solutions to a class of degenerate equations with the Grushin operator", "authors": [ "Laura Abatangelo", "Alberto Ferrero", "Paolo Luzzini" ], "categories": [ "math.AP" ], "abstract": "The Grushin Laplacian $- \\Delta_\\alpha $ is a degenerate elliptic operator in $\\mathbb{R}^{h+k}$ that degenerates on $\\{0\\} \\times \\mathbb{R}^k$. We consider weak solutions of $- \\Delta_\\alpha u= Vu$ in an open bounded connected domain $\\Omega$ with $V \\in W^{1,\\sigma}(\\Omega)$ and $\\sigma > Q/2$, where $Q = h + (1+\\alpha)k$ is the so-called homogeneous dimension of $\\mathbb{R}^{h+k}$. By means of an Almgren-type monotonicity formula we identify the exact asymptotic blow-up profile of solutions on degenerate points of $\\Omega$. As an application we derive strong unique continuation properties for solutions.", "revisions": [ { "version": "v1", "updated": "2024-10-16T14:55:22.000Z" } ], "analyses": { "subjects": [ "35H10", "35J70", "35B40", "35A16" ], "keywords": [ "degenerate equations", "grushin operator", "derive strong unique continuation properties", "almgren-type monotonicity formula", "degenerate elliptic operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }