{ "id": "2410.12632", "version": "v1", "published": "2024-10-16T14:53:13.000Z", "updated": "2024-10-16T14:53:13.000Z", "title": "An elliptic proof of the splitting theorems from Lorentzian geometry", "authors": [ "Mathias Braun", "Nicola Gigli", "Robert J. McCann", "Argam Ohanyan", "Clemens Sämann" ], "comment": "34 pages", "categories": [ "math.DG", "math-ph", "math.AP", "math.MG", "math.MP" ], "abstract": "We provide a new proof of the splitting theorems from Lorentzian geometry, in which simplicity is gained by sacrificing linearity of the d'Alembertian to recover ellipticity. We exploit a negative homogeneity (non-uniformly) elliptic $p$-d'Alembert operator for this purpose. This allows us to bring the Eschenburg, Galloway, and Newman Lorentzian splitting theorems into a framework closer to the Cheeger-Gromoll splitting theorem from Riemannian geometry.", "revisions": [ { "version": "v1", "updated": "2024-10-16T14:53:13.000Z" } ], "analyses": { "subjects": [ "83C75", "35J92", "35Q75", "49Q22", "51K10", "53C21", "53C50", "58J05" ], "keywords": [ "lorentzian geometry", "elliptic proof", "newman lorentzian splitting theorems", "framework closer", "riemannian geometry" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }