{ "id": "2410.12231", "version": "v1", "published": "2024-10-16T04:46:09.000Z", "updated": "2024-10-16T04:46:09.000Z", "title": "A geometric realization of the chromatic symmetric function of a unit interval graph", "authors": [ "Syu Kato" ], "comment": "16pp", "categories": [ "math.CO", "math.AG", "math.RT" ], "abstract": "Shareshian-Wachs, Brosnan-Chow, and Guay-Pacquet [Adv. Math.$ {\\bf 295}$ (2016), ${\\bf 329}$ (2018), arXiv:1601.05498] realized the chromatic (quasi-)symmetric function of a unit interval graph in terms of Hessenberg varieties. Here we exhibit another realization of these chromatic (quasi-)symmetric functions in terms of the Betti cohomology of the variety $\\mathscr X_\\Psi$ defined in [arXiv:2301.00862]. This yields a new inductive combinatorial expression of these chromatic symmetric functions. Based on these, we propose a geometric refinement of the Stanley-Stembridge conjecture, whose validity would imply the Sharesian-Wachs conjecture.", "revisions": [ { "version": "v1", "updated": "2024-10-16T04:46:09.000Z" } ], "analyses": { "keywords": [ "chromatic symmetric function", "unit interval graph", "geometric realization", "stanley-stembridge conjecture", "geometric refinement" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }