{ "id": "2410.11311", "version": "v1", "published": "2024-10-15T06:15:17.000Z", "updated": "2024-10-15T06:15:17.000Z", "title": "Symmetry in Deformation quantization and Geometric quantization", "authors": [ "Naichung Conan Leung", "Qin Li", "Ziming Nikolas Ma" ], "categories": [ "math.DG", "math.QA", "math.RT" ], "abstract": "In this paper, we explore the quantization of K\\\"ahler manifolds, focusing on the relationship between deformation quantization and geometric quantization. We provide a classification of degree 1 formal quantizable functions in the Berezin-Toeplitz deformation quantization, establishing that these formal functions are of the form $f = f_0 - \\frac{\\hbar}{4\\pi}(\\Delta f_0 + c)$ for a certain smooth (non-formal) function $f_0$. If $f_0$ is real-valued then $f_0$ corresponds to a Hamiltonian Killing vector field. In the presence of Hamiltonian $G$-symmetry, we address the compatibility between the infinitesimal symmetry for deformation quantization via quantum moment map and infinitesimal symmetry on geometric quantization acting on Hilbert spaces of holomorphic sections via Berezin-Toeplitz quantization.", "revisions": [ { "version": "v1", "updated": "2024-10-15T06:15:17.000Z" } ], "analyses": { "keywords": [ "geometric quantization", "infinitesimal symmetry", "hamiltonian killing vector field", "quantum moment map", "berezin-toeplitz deformation quantization" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }