{ "id": "2410.10882", "version": "v1", "published": "2024-10-10T06:05:43.000Z", "updated": "2024-10-10T06:05:43.000Z", "title": "Type number for orders of level (N_1,N_2)", "authors": [ "Yifan Luo", "Haigang Zhou" ], "comment": "arXiv admin note: text overlap with arXiv:2402.17443", "categories": [ "math.NT" ], "abstract": "Let $N_1=p_1^{2u_1+1}...p_w^{2u_w+1}$, where the $p_i$ are distinct primes, $u_1,...,u_w$ are nonnegative integers and $w$ is an odd integer, and $N_2$ be a positive integer such that $\\gcd(N_1,N_2)=1$. In this paper, we give an explicit formula for the type number, i.e. the number of isomorphism classes, of orders of level $(N_1, N_2)$. The method of proof involves the Siegel-Weil formula for ternary quadratic forms.", "revisions": [ { "version": "v1", "updated": "2024-10-10T06:05:43.000Z" } ], "analyses": { "subjects": [ "11E20", "11R52", "11F37", "11E41" ], "keywords": [ "type number", "ternary quadratic forms", "explicit formula", "siegel-weil formula", "odd integer" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }