{ "id": "2410.10754", "version": "v2", "published": "2024-10-14T17:26:27.000Z", "updated": "2024-10-15T07:40:23.000Z", "title": "The macroscopic shape of Gelfand-Tsetlin patterns and free probability", "authors": [ "Samuel G. G. Johnston", "Joscha Prochno" ], "comment": "56 pages", "categories": [ "math.PR" ], "abstract": "A Gelfand-Tsetlin function is a real-valued function $\\phi:C \\to \\mathbb{R}$ defined on a finite subset $C$ of the lattice $\\mathbb{Z}^2$ with the property that $\\phi(x) \\leq \\phi(y)$ for every edge $\\langle x,y \\rangle$ directed north or east between two elements of $C$. We study the statistical physics properties of random Gelfand-Tsetlin functions from the perspective of random surfaces, showing in particular that the surface tension of Gelfand-Tsetlin functions at gradient $u = (u_1,u_2) \\in \\mathbb{R}_{>0}^2$ is given by \\begin{align*} \\sigma(u_1,u_2) = - \\log (u_1 + u_2 ) - \\log \\sin (\\pi u_1/(u_1+u_2)) -1 + \\log \\pi. \\end{align*} A Gelfand-Tsetlin pattern is a Gelfand-Tsetlin function defined on the triangle $T_n = \\{(x_1,x_2) \\in \\mathbb{Z}^2 : 1 \\leq x_2 \\leq x_1 \\leq n \\}$. We show that after rescaling, a sequence of random Gelfand-Tsetlin patterns with fixed diagonal heights approximating a probability measure $\\mu$ satisfies a large deviation principle with speed $n^2$ and rate functional of the form \\begin{align*} \\mathcal{E}[\\psi] := \\int_{\\blacktriangle} \\sigma(\\nabla \\psi)\\, \\mathrm{d}s \\,\\mathrm{d}t - \\chi[\\mu] \\end{align*} where $\\chi[\\mu]$ is Voiculescu's free entropy. We show that the Euler-Lagrange equations satisfied by the minimiser of the rate functional agree with those governing the free compression operation in free probability, thereby resolving a recent conjecture of Shlyakhtenko and Tao.", "revisions": [ { "version": "v2", "updated": "2024-10-15T07:40:23.000Z" } ], "analyses": { "subjects": [ "82B41", "82B20", "46L54", "15A42", "60G55", "60F10", "49Q20" ], "keywords": [ "free probability", "macroscopic shape", "random gelfand-tsetlin functions", "large deviation principle", "rate functional agree" ], "note": { "typesetting": "TeX", "pages": 56, "language": "en", "license": "arXiv", "status": "editable" } } }