{ "id": "2410.09478", "version": "v1", "published": "2024-10-12T10:36:39.000Z", "updated": "2024-10-12T10:36:39.000Z", "title": "On the classification of extremals of Caffarelli-Kohn-Nirenberg inequalities", "authors": [ "Giulio Ciraolo", "Camilla Chiara Polvara" ], "categories": [ "math.AP" ], "abstract": "We consider a family of critical elliptic equations which arise as the Euler-Lagrange equation of Caffarelli-Kohn-Nirenberg inequalities, possibly in convex cones in $\\mathbb{R}^d$, with $d\\geq 2$. We classify positive solutions without assuming that the solution has finite energy and when the intrinsic dimension $n \\in (\\frac{3}{2},5]$.", "revisions": [ { "version": "v1", "updated": "2024-10-12T10:36:39.000Z" } ], "analyses": { "keywords": [ "caffarelli-kohn-nirenberg inequalities", "classification", "intrinsic dimension", "critical elliptic equations", "finite energy" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }