{ "id": "2410.08866", "version": "v1", "published": "2024-10-11T14:44:56.000Z", "updated": "2024-10-11T14:44:56.000Z", "title": "Bounding the A-hat genus using scalar curvature lower bounds and isoperimetric constants", "authors": [ "Qiaochu Ma", "Jinmin Wang", "Guoliang Yu", "Bo Zhu" ], "comment": "Comments are welcome!", "categories": [ "math.DG", "math.AP", "math.AT", "math.KT" ], "abstract": "In this paper, we prove an upper bound on the $\\widehat{A}$ genus of a smooth, closed, spin Riemannian manifold using its scalar curvature lower bound, Neumann isoperimetric constant, and volume. The proof of this result relies on spectral analysis of the Dirac operator. We also construct an example to show that the Neumann isoperimetric constant in this bound is necessary. Our result partially answers a question of Gromov on bounding characteristic numbers using scalar curvature lower bound.", "revisions": [ { "version": "v1", "updated": "2024-10-11T14:44:56.000Z" } ], "analyses": { "keywords": [ "scalar curvature lower bound", "a-hat genus", "neumann isoperimetric constant", "spin riemannian manifold", "result relies" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }