{ "id": "2410.04902", "version": "v1", "published": "2024-10-07T10:39:43.000Z", "updated": "2024-10-07T10:39:43.000Z", "title": "Unitary branching rules for the general linear Lie superalgebra", "authors": [ "Mark Gould", "Yang Zhang" ], "comment": "14 pages", "categories": [ "math.RT", "math-ph", "math.MP" ], "abstract": "In terms of highest weights, we establish branching rules for finite dimensional unitary simple modules of the general linear Lie superalgebra $\\mathfrak{gl}_{m|n}$. Our proof uses the Howe duality for $\\mathfrak{gl}_{m|n}$, as well as branching rules for Kac modules. Moreover, we derive the branching rules of type 2 unitary simple $\\mathfrak{gl}_{m|n}$-modules, which are dual to the aforementioned unitary modules.", "revisions": [ { "version": "v1", "updated": "2024-10-07T10:39:43.000Z" } ], "analyses": { "subjects": [ "17B10", "05E10" ], "keywords": [ "general linear lie superalgebra", "unitary branching rules", "finite dimensional unitary simple modules" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }