{ "id": "2410.00901", "version": "v1", "published": "2024-10-01T17:45:42.000Z", "updated": "2024-10-01T17:45:42.000Z", "title": "The Complexity of Proper Homotopy Equivalence of Graphs", "authors": [ "Hannah Hoganson", "Jenna Zomback" ], "comment": "13 pages, 12 figures", "categories": [ "math.LO", "math.GN", "math.GT" ], "abstract": "We demonstrate that the proper homotopy equivalence relation for locally finite graphs is Borel complete. Furthermore, among the infinite graphs, there is a comeager equivalence class. As corollaries, we obtain the analogous results for the homeomorphism relation of noncompact surfaces with pants decompositions.", "revisions": [ { "version": "v1", "updated": "2024-10-01T17:45:42.000Z" } ], "analyses": { "subjects": [ "03E15", "54H05", "57M99" ], "keywords": [ "complexity", "proper homotopy equivalence relation", "comeager equivalence class", "pants decompositions", "borel complete" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }