{ "id": "2409.18621", "version": "v1", "published": "2024-09-27T10:45:02.000Z", "updated": "2024-09-27T10:45:02.000Z", "title": "A New Bound on the Cumulant Generating Function of Dirichlet Processes", "authors": [ "Pierre Perrault", "Denis Belomestny", "Pierre Ménard", "Éric Moulines", "Alexey Naumov", "Daniil Tiapkin", "Michal Valko" ], "categories": [ "math.PR", "cs.IT", "math.IT" ], "abstract": "In this paper, we introduce a novel approach for bounding the cumulant generating function (CGF) of a Dirichlet process (DP) $X \\sim \\text{DP}(\\alpha \\nu_0)$, using superadditivity. In particular, our key technical contribution is the demonstration of the superadditivity of $\\alpha \\mapsto \\log \\mathbb{E}_{X \\sim \\text{DP}(\\alpha \\nu_0)}[\\exp( \\mathbb{E}_X[\\alpha f])]$, where $\\mathbb{E}_X[f] = \\int f dX$. This result, combined with Fekete's lemma and Varadhan's integral lemma, converts the known asymptotic large deviation principle into a practical upper bound on the CGF $ \\log\\mathbb{E}_{X\\sim \\text{DP}(\\alpha\\nu_0)}{\\exp(\\mathbb{E}_{X}{[f]})} $ for any $\\alpha > 0$. The bound is given by the convex conjugate of the scaled reversed Kullback-Leibler divergence $\\alpha\\mathrm{KL}(\\nu_0\\Vert \\cdot)$. This new bound provides particularly effective confidence regions for sums of independent DPs, making it applicable across various fields.", "revisions": [ { "version": "v1", "updated": "2024-09-27T10:45:02.000Z" } ], "analyses": { "keywords": [ "cumulant generating function", "dirichlet process", "asymptotic large deviation principle", "varadhans integral lemma", "feketes lemma" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }