{ "id": "2409.18220", "version": "v1", "published": "2024-09-26T18:58:48.000Z", "updated": "2024-09-26T18:58:48.000Z", "title": "A Linear Lower Bound for the Square Energy of Graphs", "authors": [ "Saieed Akbari", "Hitesh Kumar", "Bojan Mohar", "Shivaramakrishna Pragada" ], "comment": "5 pages, 1 figure", "categories": [ "math.CO" ], "abstract": "Let $G$ be a graph of order $n$ with eigenvalues $\\lambda_1 \\geq \\cdots \\geq\\lambda_n$. Let \\[s^+(G)=\\sum_{\\lambda_i>0} \\lambda_i^2, \\qquad s^-(G)=\\sum_{\\lambda_i<0} \\lambda_i^2.\\] The smaller value, $s(G)=\\min\\{s^+(G), s^-(G)\\}$ is called the \\emph{square energy} of $G$. In 2016, Elphick, Farber, Goldberg and Wocjan conjectured that for every connected graph $G$ of order $n$, $s(G)\\geq n-1.$ No linear bound for $s(G)$ in terms of $n$ is known. Let $H_1, \\ldots, H_k$ be disjoint vertex-induced subgraphs of $G$. In this note, we prove that \\[s^+(G)\\geq\\sum_{i=1}^{k} s^+(H_i) \\quad \\text{ and } \\quad s^-(G)\\geq\\sum_{i=1}^{k} s^-(H_i),\\] which implies that $s(G)\\geq \\frac{3n}{4}$ for every connected graph $G$ of order $n\\ge 4$.", "revisions": [ { "version": "v1", "updated": "2024-09-26T18:58:48.000Z" } ], "analyses": { "subjects": [ "05C50" ], "keywords": [ "linear lower bound", "square energy", "connected graph", "smaller value", "linear bound" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }