{ "id": "2409.15540", "version": "v1", "published": "2024-09-23T20:48:00.000Z", "updated": "2024-09-23T20:48:00.000Z", "title": "On $p(x)$-Laplacian equations in $\\mathbb{R}^{N}$ with nonlinearity sublinear at zero", "authors": [ "Shibo Liu", "Chunshan Zhao" ], "comment": "14 pages", "categories": [ "math.AP" ], "abstract": "Let $p,q$ be functions on $\\mathbb{R}^{N}$ satisfying $1\\ll q\\ll p\\ll N$, we consider $p(x)$-Laplacian problems of the form \\[ \\left\\{ \\begin{array} [c]{l}% -\\Delta_{p(x)}u+V(x)\\vert u\\vert ^{p(x)-2}u=\\lambda\\vert u\\vert ^{q(x)-2}u+g(x,u)\\text{,}\\\\ u\\in W^{1,p(x)}(\\mathbb{R}^{N})\\text{.}% \\end{array} \\right. \\] To apply variational methods, we introduce a subspace $X$ of $W^{1,p(x)}(\\mathbb{R}^N)$ as our working space. Compact embedding from $X$ into $L^{q(x)}(\\mathbb{R}^N)$ is proved, this enable us to get nontrivial solution of the problem; and two sequences of solutions going to $\\infty$ and $0$ respectively, when $g(x,\\cdot)$ is odd.", "revisions": [ { "version": "v1", "updated": "2024-09-23T20:48:00.000Z" } ], "analyses": { "subjects": [ "35J60", "35D05" ], "keywords": [ "nonlinearity sublinear", "laplacian equations", "apply variational methods", "nontrivial solution", "laplacian problems" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }