{ "id": "2409.10129", "version": "v1", "published": "2024-09-16T09:43:08.000Z", "updated": "2024-09-16T09:43:08.000Z", "title": "Generalized Turán problem for a path and a clique", "authors": [ "Xiaona Fang", "Xiutao Zhu", "Yaojun Chen" ], "categories": [ "math.CO" ], "abstract": "Let $\\mathcal{H}$ be a family of graphs. The generalized Tur\\'an number $ex(n, K_r, \\mathcal{H})$ is the maximum number of copies of the clique $K_r$ in any $n$-vertex $\\mathcal{H}$-free graph. In this paper, we determine the value of $ex(n, K_r, \\{P_k, K_m \\} )$ for sufficiently large $n$ with an exceptional case, and characterize all corresponding extremal graphs, which generalizes and strengthens the results of Katona and Xiao [EJC, 2024] on $ex(n, K_2, \\{P_k, K_m \\} )$. For the exceptional case, we obtain a tight upper bound for $ex(n, K_r, \\{P_k, K_m \\} )$ that confirms a conjecture on $ex(n, K_2, \\{P_k, K_m \\} )$ posed by Katona and Xiao.", "revisions": [ { "version": "v1", "updated": "2024-09-16T09:43:08.000Z" } ], "analyses": { "keywords": [ "generalized turán problem", "exceptional case", "tight upper bound", "corresponding extremal graphs", "free graph" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }