{ "id": "2409.10004", "version": "v1", "published": "2024-09-16T05:28:28.000Z", "updated": "2024-09-16T05:28:28.000Z", "title": "Classification of horocycle orbit closures in $ \\mathbb{Z} $-covers", "authors": [ "James Farre", "Or Landesberg", "Yair Minsky" ], "comment": "55 pages, 8 figures", "categories": [ "math.DS", "math.GT" ], "abstract": "We fully describe all horocycle orbit closures in $ \\mathbb{Z} $-covers of compact hyperbolic surfaces. Our results rely on a careful analysis of the efficiency of all distance minimizing geodesic rays in the cover. As a corollary we obtain in this setting that all non-maximal horocycle orbit closures, while fractal, have integer Hausdorff dimension.", "revisions": [ { "version": "v1", "updated": "2024-09-16T05:28:28.000Z" } ], "analyses": { "subjects": [ "37D40", "57K20", "37A17", "30F60", "22F30", "57K32", "37B20", "37B99" ], "keywords": [ "classification", "non-maximal horocycle orbit closures", "compact hyperbolic surfaces", "integer hausdorff dimension", "distance minimizing geodesic rays" ], "note": { "typesetting": "TeX", "pages": 55, "language": "en", "license": "arXiv", "status": "editable" } } }