{ "id": "2409.09142", "version": "v1", "published": "2024-09-13T18:53:24.000Z", "updated": "2024-09-13T18:53:24.000Z", "title": "Abundance and SYZ conjecture in families of hyperkahler manifolds", "authors": [ "Andrey Soldatenkov", "Misha Verbitsky" ], "comment": "25 pages, 2 figures, version 1.0.1", "categories": [ "math.AG", "math.DG" ], "abstract": "Let $L$ be a holomorphic line bundle on a hyperkahler manifold $M$, with $c_1(L)$ nef and not big. SYZ conjecture predicts that $L$ is semiample. We prove that this is true, assuming that $(M,L)$ has a deformation $(M',L')$ with $L'$ semiample. We introduce a version of the Teichmuller space that parametrizes pairs $(M,L)$ up to isotopy. We prove a version of the global Torelli theorem for such Teichmuller spaces and use it to deduce the deformation invariance of semiampleness.", "revisions": [ { "version": "v1", "updated": "2024-09-13T18:53:24.000Z" } ], "analyses": { "subjects": [ "53C26", "14J42" ], "keywords": [ "hyperkahler manifold", "teichmuller space", "syz conjecture predicts", "holomorphic line bundle", "global torelli theorem" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }