{ "id": "2409.08842", "version": "v1", "published": "2024-09-13T14:02:13.000Z", "updated": "2024-09-13T14:02:13.000Z", "title": "Contravariant Koszul duality between non-positive and positive dg algebras", "authors": [ "Riku Fushimi" ], "comment": "30pages", "categories": [ "math.RT" ], "abstract": "We characterize locally finite non-positive dg algebras that arise as Koszul duals of locally finite non-positive dg algebras. Moreover, we show that the Koszul dual functor induces contravariant derived equivalnces. As a consequence, we prove that every functorially finite bounded heart of $\\pvd A$ of a locally finite non-positive dg algebra is a length category.", "revisions": [ { "version": "v1", "updated": "2024-09-13T14:02:13.000Z" } ], "analyses": { "subjects": [ "16E35", "16E45", "16S37", "18G80" ], "keywords": [ "locally finite non-positive dg algebra", "contravariant koszul duality", "positive dg algebras", "dual functor induces contravariant", "induces contravariant derived equivalnces" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }