{ "id": "2409.07867", "version": "v1", "published": "2024-09-12T09:26:24.000Z", "updated": "2024-09-12T09:26:24.000Z", "title": "Interpolation scattering for wave equations with singular potentials and singular data", "authors": [ "Tran Thi Ngoc", "Pham Truong Xuan" ], "comment": "15 pages", "categories": [ "math.AP", "math-ph", "math.FA", "math.MP" ], "abstract": "In this paper we investigate a construction of scattering for wave-type equations with singular potentials on the whole space $\\mathbb{R}^n$ in a framework of weak-$L^p$ spaces. First, we use an Yamazaki-type estimate for wave groups on Lorentz spaces and fixed point arguments to prove the global well-posedness for wave-type equations on weak-$L^p$ spaces. Then, we provide a corresponding scattering results in such singular framework. Finally, we use also the dispersive estimates to establish the polynomial stability and improve the decay of scattering.", "revisions": [ { "version": "v1", "updated": "2024-09-12T09:26:24.000Z" } ], "analyses": { "keywords": [ "singular potentials", "wave equations", "singular data", "interpolation scattering", "wave-type equations" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }