{ "id": "2409.07826", "version": "v1", "published": "2024-09-12T08:16:45.000Z", "updated": "2024-09-12T08:16:45.000Z", "title": "Intersection of orbits of loxodromic automorphisms of affine surfaces", "authors": [ "Marc Abboud" ], "categories": [ "math.AG", "math.CV", "math.DS", "math.NT" ], "abstract": "We show the following result: If $X_0$ is an affine surface over a field $K$ and $f, g$ are two loxodromic automorphisms with an orbit meeting infinitely many times, then $f$ and $g$ must share a common iterate. The proof uses the preliminary work of the author in [Abb23] on the dynamics of endomorphisms of affine surfaces and arguments from arithmetic dynamics. We then show a dynamical Mordell-Lang type result for surfaces in $X_0 \\times X_0$.", "revisions": [ { "version": "v1", "updated": "2024-09-12T08:16:45.000Z" } ], "analyses": { "subjects": [ "37F10", "37F80", "37P05", "37P30", "32H50", "37P55", "11G50" ], "keywords": [ "affine surface", "loxodromic automorphisms", "intersection", "dynamical mordell-lang type result", "common iterate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }