{ "id": "2409.06866", "version": "v1", "published": "2024-09-10T21:05:18.000Z", "updated": "2024-09-10T21:05:18.000Z", "title": "The number of solutions of a random system of polynomials over a finite field", "authors": [ "Ritik Jain" ], "comment": "13 pages", "categories": [ "math.PR", "math.CO", "math.NT" ], "abstract": "We study the probability distribution of the number of common zeros of a system of $m$ random $n$-variate polynomials over a finite commutative ring $R$. We compute the expected number of common zeros of a system of polynomials over $R$. Then, in the case that $R$ is a field, under a necessary-and-sufficient condition on the sample space, we show that the number of common zeros is binomially distributed.", "revisions": [ { "version": "v1", "updated": "2024-09-10T21:05:18.000Z" } ], "analyses": { "keywords": [ "random system", "finite field", "common zeros", "variate polynomials", "probability distribution" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }