{ "id": "2409.03967", "version": "v1", "published": "2024-09-06T01:36:24.000Z", "updated": "2024-09-06T01:36:24.000Z", "title": "Covers of surfaces", "authors": [ "Ian Biringer", "Yassin Chandran", "Tommaso Cremaschi", "Jing Tao", "Nicholas G. Vlamis", "Mujie Wang", "Brandis Whitfield" ], "categories": [ "math.GT" ], "abstract": "We study the homeomorphism types of certain covers of (always orientable) surfaces, usually of infinite-type. We show that every surface with non-abelian fundamental group is covered by every noncompact surface, we identify the universal abelian covers and the $\\mathbb{Z}/n\\mathbb{Z}$-homology covers of surfaces, and we show that non-locally finite characteristic covers of surfaces have four possible homeomorphism types.", "revisions": [ { "version": "v1", "updated": "2024-09-06T01:36:24.000Z" } ], "analyses": { "keywords": [ "homeomorphism types", "non-abelian fundamental group", "non-locally finite characteristic covers", "universal abelian covers", "homology covers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }