{ "id": "2409.03399", "version": "v1", "published": "2024-09-05T10:30:24.000Z", "updated": "2024-09-05T10:30:24.000Z", "title": "On Heisenberg groups", "authors": [ "Florian L. Deloup" ], "comment": "10 pages. Preliminary", "categories": [ "math.GR" ], "abstract": "It is known that an abelian group $A$ and a $2$-cocycle $c:A \\times A \\to C$ yield a group ${\\mathscr{H}}(A,C,c)$ which we call a Heisenberg group. This group, a central extension of $A$, is the archetype of a class~$2$ nilpotent group. In this note, we prove that under mild conditions, any class~$2$ nilpotent group $G$ is equivalent as an extension of $G/[G,G]$ to a Heisenberg group ${\\mathscr{H}}(G/[G,G], [G,G], c')$ whose $2$-cocycle $c'$ is bimultiplicative.", "revisions": [ { "version": "v1", "updated": "2024-09-05T10:30:24.000Z" } ], "analyses": { "subjects": [ "20J06", "20F18" ], "keywords": [ "heisenberg group", "nilpotent group", "mild conditions", "abelian group" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }