{ "id": "2409.03222", "version": "v1", "published": "2024-09-05T03:37:08.000Z", "updated": "2024-09-05T03:37:08.000Z", "title": "On the size of sets avoiding a general structure", "authors": [ "Runze Wang" ], "categories": [ "math.CO" ], "abstract": "Given a finite abelian group $G$ and a subset $S\\subseteq G$, we let $N_{G,\\ S}$ be the smallest integer $N$ such that for any subset $A\\subseteq G$ with $N$ elements, we have $g+S\\subseteq A$ for some $g\\in G$. Using the probabilistic method, we prove that \\begin{align*} \\frac{|H_G(S)|-1}{|H_G(S)|}|G|+\\Biggl\\lceil\\biggl(\\frac{|G|}{|H_G(S)|}\\biggr)^{1-|H_G(S)|/|S|}\\Biggr\\rceil\\le N_{G,\\ S}\\le \\biggl\\lfloor\\frac{|S|-1}{|S|}|G|\\biggr\\rfloor+1, \\end{align*} where $H_G(S)$ is the stabilizer of $S$.", "revisions": [ { "version": "v1", "updated": "2024-09-05T03:37:08.000Z" } ], "analyses": { "keywords": [ "general structure", "sets avoiding", "finite abelian group", "probabilistic method", "smallest integer" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }