{ "id": "2409.03073", "version": "v1", "published": "2024-09-04T20:55:28.000Z", "updated": "2024-09-04T20:55:28.000Z", "title": "On the existence of Hamiltonian cycles in hypercubes", "authors": [ "Gabriele Di Pietro", "Marco RipĂ " ], "comment": "6 pages", "categories": [ "math.CO" ], "abstract": "For each pair of positive integers $(a,b)$ such that $a \\geq 0$ and $b > 1$, the present paper provides a necessary and sufficient condition for the existence of Hamiltonian cycles visiting all the vertices of any $k$-dimensional grid $\\{0,1\\}^k \\subset \\mathbb{R}^k$ and whose associated Euclidean distance is equal to $\\sqrt{a^2+b^2}$. Our solution extends previously stated results in fairy chess on the existence of closed Euclidean $(a,b)$-leapers tours for $2 \\times 2 \\times \\cdots \\times 2$ chessboards, where the (Euclidean) knight identifies the $(1,2)$-leaper.", "revisions": [ { "version": "v1", "updated": "2024-09-04T20:55:28.000Z" } ], "analyses": { "subjects": [ "05C12", "05C45", "05C38" ], "keywords": [ "hamiltonian cycles", "hypercubes", "sufficient condition", "dimensional grid", "associated euclidean distance" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }