{ "id": "2408.16994", "version": "v1", "published": "2024-08-30T03:53:54.000Z", "updated": "2024-08-30T03:53:54.000Z", "title": "Nayak's theorem for compact operators", "authors": [ "B V Rajarama Bhat", "Neeru Bala" ], "comment": "14 Pages", "categories": [ "math.FA" ], "abstract": "Let $A$ be an $m\\times m$ complex matrix and let $\\lambda _1, \\lambda _2, \\ldots , \\lambda _m$ be the eigenvalues of $A$ arranged such that $|\\lambda _1|\\geq |\\lambda _2|\\geq \\cdots \\geq |\\lambda _m|$ and for $n\\geq 1,$ let $s^{(n)}_1\\geq s^{(n)}_2\\geq \\cdots \\geq s^{(n)}_m$ be the singular values of $A^n$. Then a famous theorem of Yamamoto (1967) states that $$\\lim _{n\\to \\infty}(s^{(n)}_j )^{\\frac{1}{n}}= |\\lambda _j|, ~~\\forall \\,1\\leq j\\leq m.$$ Recently S. Nayak strengthened this result very significantly by showing that the sequence of matrices $|A^n|^{\\frac{1}{n}}$ itself converges to a positive matrix $B$ whose eigenvalues are $|\\lambda _1|,|\\lambda _2|,$ $\\ldots , |\\lambda _m|.$ Here this theorem has been extended to arbitrary compact operators on infinite dimensional complex separable Hilbert spaces. The proof makes use of Nayak's theorem, Stone-Weirstrass theorem, Borel-Caratheodory theorem and some technical results of Anselone and Palmer on collectively compact operators. Simple examples show that the result does not hold for general bounded operators.", "revisions": [ { "version": "v1", "updated": "2024-08-30T03:53:54.000Z" } ], "analyses": { "subjects": [ "47A10", "47B06", "47B07" ], "keywords": [ "nayaks theorem", "dimensional complex separable hilbert spaces", "infinite dimensional complex separable hilbert", "arbitrary compact operators" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }