{ "id": "2408.16511", "version": "v1", "published": "2024-08-29T13:16:48.000Z", "updated": "2024-08-29T13:16:48.000Z", "title": "On the stability of finite-volume schemes on non-uniform meshes", "authors": [ "Pavel Bakhvalov", "Mikhail Surnachev" ], "categories": [ "math.NA", "cs.NA" ], "abstract": "In this paper, we study the L2 stability of high-order finite-volume schemes for the 1D transport equation on non-uniform meshes. We consider the case when a small periodic perturbation is applied to a uniform mesh. For this case, we establish a sufficient stability condition. This allows to prove the (p+1)-th order convergence of finite-volume schemes based on p-th order polynomials.", "revisions": [ { "version": "v1", "updated": "2024-08-29T13:16:48.000Z" } ], "analyses": { "subjects": [ "65M12" ], "keywords": [ "non-uniform meshes", "p-th order polynomials", "1d transport equation", "sufficient stability condition", "small periodic perturbation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }