{ "id": "2408.15893", "version": "v1", "published": "2024-08-28T16:04:09.000Z", "updated": "2024-08-28T16:04:09.000Z", "title": "Azumaya algebras over unramifed extensions of function fields", "authors": [ "Mohammed Moutand" ], "comment": "9 pages", "categories": [ "math.AG" ], "abstract": "Let $X$ be a smooth variety over a field $K$ with function field $K(X)$. Using the interpretation of the torsion part of the \\'etale cohomology group $H_{\\text{\\'et}}^2(K(X), \\mathbb{G}_m)$ in terms of Milnor-Quillen algebraic $K$-group $K_2(K(X))$, we prove that under mild conditions on the norm maps along unramified extensions of $K(X)$ over $X$, there exist cohomological Brauer classes in $\\operatorname{Br}'(X)$ that are representable by Azumaya algebras on $X$. Theses conditions are almost satisfied in the case of number fields, providing then, a partial answer on a question of Grothendieck.", "revisions": [ { "version": "v1", "updated": "2024-08-28T16:04:09.000Z" } ], "analyses": { "keywords": [ "function field", "azumaya algebras", "unramifed extensions", "etale cohomology group", "milnor-quillen algebraic" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }