{ "id": "2408.14524", "version": "v1", "published": "2024-08-26T09:31:04.000Z", "updated": "2024-08-26T09:31:04.000Z", "title": "On characterization of prime divisors of the index of a quadrinomial", "authors": [ "Tapas Chatterjee", "Karishan Kumar" ], "comment": "23 pages", "categories": [ "math.NT" ], "abstract": "Let $\\theta$ be an algebraic integer and $f(x)=x^{n}+ax^{n-1}+bx+c$ be the minimal polynomial of $\\theta$ over the rationals. Let $K=\\mathbb{Q}(\\theta)$ be a number field and $\\mathcal{O}_{K}$ be the ring of integers of $K.$ In this article, we characterize all the prime divisors of the discriminant of $f(x)$ which do not divide the index of $f(x).$ As a fascinating corollary, we deduce necessary and sufficient conditions for the monogenity of the field $K=\\mathbb{Q}(\\theta),$ where $\\theta$ is associated with certain quadrinomials.", "revisions": [ { "version": "v1", "updated": "2024-08-26T09:31:04.000Z" } ], "analyses": { "subjects": [ "11R04", "11R29", "11Y40", "11R09", "11R21" ], "keywords": [ "prime divisors", "quadrinomial", "characterization", "sufficient conditions", "algebraic integer" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }