{ "id": "2408.13331", "version": "v1", "published": "2024-08-23T18:43:26.000Z", "updated": "2024-08-23T18:43:26.000Z", "title": "$(t,r)$ Broadcast Domination Numbers and Densities of the Truncated Square Tiling Graph", "authors": [ "Jillian Cervantes", "Pamela E. Harris" ], "comment": "32 pages, 27 figures", "categories": [ "math.CO" ], "abstract": "For a pair of positive integer parameters $(t,r)$, a subset $T$ of vertices of a graph $G$ is said to $(t,r)$ broadcast dominate a graph $G$ if, for any vertex $u$ in $G$, we have $\\sum_{v\\in T, u\\in N_t(v)}(t-d(u,v))\\geq r$, where where $N_{t}(v)=\\{u\\in V:d(u,v)