{ "id": "2408.12529", "version": "v1", "published": "2024-08-22T16:32:55.000Z", "updated": "2024-08-22T16:32:55.000Z", "title": "Perturbation theory for the parabolic regularity problem", "authors": [ "Martin Ulmer" ], "categories": [ "math.AP" ], "abstract": "We show small and large Carleson perturbation results for the parabolic regularity boundary value problem with boundary data in $\\dot{L}_{1,1/2}^p$. The operator we consider is $L:=\\partial_t -\\mathrm{div}(A\\nabla\\cdot)$ and the domains are parabolic cylinders $\\Omega=\\mathcal{O}\\times\\mathbb{R}$, where $\\mathcal{O}$ is a chord arc domain or Lipschitz domain.", "revisions": [ { "version": "v1", "updated": "2024-08-22T16:32:55.000Z" } ], "analyses": { "subjects": [ "35K10", "35K20" ], "keywords": [ "parabolic regularity problem", "perturbation theory", "parabolic regularity boundary value problem", "large carleson perturbation results", "chord arc domain" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }