{ "id": "2408.10399", "version": "v1", "published": "2024-08-19T20:31:10.000Z", "updated": "2024-08-19T20:31:10.000Z", "title": "On the sign changes of $ψ(x)-x$", "authors": [ "Maciej Grześkowiak", "Jerzy Kaczorowski", "Łukasz Pańkowski", "Maciej Radziejewski" ], "categories": [ "math.NT" ], "abstract": "We improve the lower bound for $V(T)$, the number of sign changes of the error term $\\psi(x)-x$ in the Prime Number Theorem in the interval $[1,T]$ for large $T$. We show that \\[ \\liminf_{T\\to\\infty}\\frac{V(T)}{\\log T}\\geq\\frac{\\gamma_{0}}{\\pi}+\\frac{1}{60} \\] where $\\gamma_{0}=14.13\\ldots$ is the imaginary part of the lowest-lying non-trivial zero of the Riemann zeta-function. The result is based on a new density estimate for zeros of the associated $k$-function, over $4\\cdot10^{21}$ times better than previously known estimates of this type.", "revisions": [ { "version": "v1", "updated": "2024-08-19T20:31:10.000Z" } ], "analyses": { "subjects": [ "11M26", "11N05", "42A75" ], "keywords": [ "sign changes", "prime number theorem", "lower bound", "density estimate", "error term" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }