{ "id": "2408.09990", "version": "v1", "published": "2024-08-19T13:41:19.000Z", "updated": "2024-08-19T13:41:19.000Z", "title": "Hypercomplete étale framed motives and comparison of stable homotopy groups of motivic spectra and étale realizations over a field", "authors": [ "Andrei Druzhinin", "Ola Sande" ], "categories": [ "math.AG" ], "abstract": "For any base field and integer $l$ invertible in $k$, we prove that $\\Omega^\\infty_{\\mathbb{G}_m}$ and $\\Omega^\\infty_{\\mathbb{P}^1}$ commute with hyper \\'etale sheafification $L_{\\acute{e}t}$ and Betti realization through infinite loop space theory in motivic homotopy theory. The central subject of this article is an $l$-complete hypercomplete \\'etale analog of the framed motives theory developed by Garkusha and Panin. Using Bachman's hypercomplete \\'etale \\RigidityTheorem and the $\\infty$-categorical approach of framed motivic spaces by Elmanto, Hoyois, Khan, Sosnilo, Yakerson, we prove the recognition principle and the framed motives formula for the composite functor \\[\\Delta^\\mathrm{op}\\mathrm{Sm}_k\\to \\mathrm{Spt}^{\\mathbb{G}_m^{-1}}_{\\mathbb{A}^1,\\acute{e}t}(\\mathrm{Sm}_k)\\xrightarrow{\\Omega^\\infty_{\\mathbb{G}_m}} \\mathrm{Spt}_{\\acute{e}t,\\hat{n}}(\\mathrm{Sm}_k).\\] The first applications include the hypercomplete \\'etale stable motivic connectivity theorem and an \\'etale local isomorphism \\[\\pi^{\\mathbb{A}^1,\\mathrm{Nis}}_{i,j}(E)\\simeq\\pi^{\\mathbb{A}^1,\\acute{e}t}_{i,j}(E)\\] for any $l$-complete effective motivic spectra $E$, and $j\\geq 0$. Furthermore, we obtain a new proof for Levine's comparison isomorphism over $\\mathbb C$, $\\pi_{i,0}^{\\mathbb{A}^1,\\mathrm{Nis}}(E)(\\mathbb{C})\\cong \\pi_i(Be(E))$, and Zargar's generalization for algebraically closed fields, that applies to an arbitrary base field.", "revisions": [ { "version": "v1", "updated": "2024-08-19T13:41:19.000Z" } ], "analyses": { "keywords": [ "stable homotopy groups", "framed motives", "motivic spectra", "hypercomplete etale", "realization" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }