{ "id": "2408.09776", "version": "v1", "published": "2024-08-19T08:05:38.000Z", "updated": "2024-08-19T08:05:38.000Z", "title": "Supercongruences via Beukers' method", "authors": [ "Zhi-Hong Sun", "Dongxi Ye" ], "comment": "36 pages", "categories": [ "math.NT", "math.CA", "math.CO" ], "abstract": "Recently, using modular forms F. Beukers posed a unified method that can deal with a large number of supercongruences involving binomial coefficients and Ap\\'ery-like numbers. In this paper, we use Beukers' method to prove some conjectures of the first author concerning the congruences for $$\\sum_{k=0}^{(p-1)/2}\\frac{\\binom{2k}k^3}{m^k}, \\quad\\sum_{k=0}^{p-1}\\frac{\\binom{2k}k^2\\binom{4k}{2k}}{m^k}, \\quad \\sum_{k=0}^{p-1}\\frac{\\binom{2k}k\\binom{3k}k\\binom{6k}{3k}}{m^k}, \\quad \\sum_{k=0}^{p-1}\\frac{V_k}{m^k} \\quad\\hbox{and}\\quad \\sum_{k=0}^{p-1}\\frac{T_k}{m^k} $$ modulo $p^3$, where $p>3$ is a prime, $m$ is an integer not divisible by $p$, $V_n=\\sum_{k=0}^n\\binom{2k}k^2\\binom{2n-2k}{n-k}^2$ and $T_n=\\sum_{k=0}^n\\binom nk^2\\binom{2k}n^2$.", "revisions": [ { "version": "v1", "updated": "2024-08-19T08:05:38.000Z" } ], "analyses": { "subjects": [ "11A07", "11B65", "11E25", "11F03", "11F20" ], "keywords": [ "supercongruences", "modular forms", "binomial coefficients", "large number", "conjectures" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable" } } }