{ "id": "2408.09428", "version": "v1", "published": "2024-08-18T10:02:02.000Z", "updated": "2024-08-18T10:02:02.000Z", "title": "Curvature estimates for semi-convex solutions of asymptotic Plateau problem in $\\mathbb{H}^{n+1}$", "authors": [ "Han Hong", "Ruijia Zhang" ], "comment": "38 pages, comments welcome", "categories": [ "math.DG" ], "abstract": "In this paper, we consider the asymptotic $\\sigma_k$ Plateau problem in hyperbolic space. We establish $C^2$ estimates for semi-convex complete hypersurfaces satisfying constant $\\sigma_k$ curvature with a prescribed asymptotic boundary at the infinity for $2\\leq k\\leq n-2$ . The result is based on a new crucial concavity inequality derived for hessian equations.", "revisions": [ { "version": "v1", "updated": "2024-08-18T10:02:02.000Z" } ], "analyses": { "subjects": [ "53C21", "35J60", "53C40" ], "keywords": [ "asymptotic plateau problem", "curvature estimates", "semi-convex solutions", "semi-convex complete hypersurfaces satisfying constant", "crucial concavity inequality" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable" } } }