{ "id": "2408.09405", "version": "v1", "published": "2024-08-18T08:32:24.000Z", "updated": "2024-08-18T08:32:24.000Z", "title": "Boundary determination of the Riemannian metric from Cauchy data for the Stokes equations", "authors": [ "Xiaoming Tan" ], "comment": "13 pages", "categories": [ "math.AP", "math.DG" ], "abstract": "For a compact connected Riemannian manifold of dimension $n$ with smooth boundary, $n\\geqslant 2$, we prove that the Cauchy data (or the Dirichlet-to-Neumann map) for the Stokes equations uniquely determines the partial derivatives of all orders of the metric on the boundary of the manifold.", "revisions": [ { "version": "v1", "updated": "2024-08-18T08:32:24.000Z" } ], "analyses": { "keywords": [ "cauchy data", "riemannian metric", "boundary determination", "compact connected riemannian manifold", "stokes equations uniquely determines" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }