{ "id": "2408.09116", "version": "v1", "published": "2024-08-17T06:54:39.000Z", "updated": "2024-08-17T06:54:39.000Z", "title": "Sharp $L^q$-Convergence Rate in $p$-Wasserstein Distance for Empirical Measures of Diffusion Processes", "authors": [ "Feng-Yu Wang", "Bingyao Wu", "Jie-Xiang Zhu" ], "categories": [ "math.PR" ], "abstract": "For a class of (non-symmetric) diffusion processes on a length space, which in particular include the (reflecting) diffusion processes on a connected compact Riemannian manifold, the exact convergence rate is derived for $({\\mathbb E} [{\\mathbb W}_p^q(\\mu_T,\\mu)])^{\\frac{1}{q}} (T \\to \\infty)$ uniformly in $(p,q)\\in [1,\\infty) \\times (0,\\infty)$, where $\\mu_T$ is the empirical measure of the diffusion process, $\\mu$ is the unique invariant probability measure, and ${\\mathbb W}_p$ is the $p$-Wasserstein distance. Moreover, when the dimension parameter is less than $4$, we prove that ${\\mathbb E} |T {\\mathbb W}_2^2(\\mu_T,\\mu)-\\Xi(T)|^q \\to 0$ as $T\\to\\infty$ for any $q\\ge 1$, where $\\Xi(T)$ is explicitly given by eigenvalues and eigenfunctions for the symmetric part of the generator.", "revisions": [ { "version": "v1", "updated": "2024-08-17T06:54:39.000Z" } ], "analyses": { "keywords": [ "diffusion process", "wasserstein distance", "empirical measure", "unique invariant probability measure", "exact convergence rate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }